The Effect of Phosphotungstic Acid Filled on Carboxymethyl Cellulose/Polyvinyl Alcohol Matrix as the Polymer Electrolyte Membrane | Scientific.Net (2023)

[1] A. Pagidi, G. Arthanareeswaran, and M. M. Seepana, Synthesis of highly stable PTFE-ZrP-PVA composite membrane for high-temperature direct methanol fuel cell,, Int. J. Hydrogen Energy. 45 (2020) 7829–7837.

DOI: 10.1016/j.ijhydene.2019.04.164

[2] A. Ozden, M. Ercelik, Y. Ozdemir, Y. Devrim, and C. O. Colpan, Enhancement of direct methanol fuel cell performance through the inclusion of zirconium phosphate,, Int. J. Hydrogen Energy. 42 (2017) 21501–21517.

DOI: 10.1016/j.ijhydene.2017.01.188

[3] W. W. Ng, H. S. Thiam, Y. L. Pang, K. C. Chong, and S. O. Lai, A State-of-Art on the Development of Nafion-Based Membrane for Performance Improvement in Direct Methanol Fuel Cells,, Membranes Basel. 12 (2022) 5.

DOI: 10.3390/membranes12050506

[4] C. Li et al., Enhanced performance of sulfonated poly (ether ether ketone) membranes by blending fully aromatic polyamide for practical application in direct methanol fuel cells (DMFCs),, Int. J. Hydrogen Energy. 42 (2017) 28567–28577.

DOI: 10.1016/j.ijhydene.2017.09.166

[5] X. Zhu, J. Huang, C. Jin, and S. Zhang, Highly proton conductive sulfonated poly ( phthalazinone ether ketone )/ sulfonated organosilane,, Polym. Bull. 75 (2018) 3739–3751.

DOI: 10.1007/s00289-017-2232-7

[6] K. Prusty and S. K. Swain, Nano ZrO2 reinforced cellulose incorporated polyethylmethacrylate/polyvinyl alcohol composite films as semiconducting packaging materials,, J. Appl. Polym. Sci.137 (2020) 1–12.

DOI: 10.1002/app.49284

[7] A. Priyangga, A. B. Pambudi, L. Atmaja, and J. Jaafar, Physicochemical properties of microcrystalline cellulose doped imidazole membrane for direct methanol fuel cell,, 4Th Int. Semin. Chem. 2349 (2021) 20045.

DOI: 10.1063/5.0051533

[8] N. F. Mazuki, A. F. Fuzlin, M. A. Saadiah, and A. S. Samsudin, An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system,, Ionics (Kiel).25 (2019) 2657–2667.

DOI: 10.1007/s11581-018-2734-9

[9] M. A. Saadiah, H. M. Tan, and A. S. Samsudin, Enhancement of proton conduction in carboxymethyl cellulose-polyvinyl alcohol employing polyethylene glycol as a plasticizer,, Bull. Mater. Sci. 43 (2020) 1–10.

[10] S. Nasibi et al., A review of Polyvinyl alcohol / Carboxiy methyl cellulose (PVA/CMC) composites for various applications,, J. Compos. Compd. 2 (2020) 68–75.

DOI: 10.29252/jcc.2.2.2

[11] M. Y. Eliza, M. Shahruddin, J. Noormaziah, and W. D. W. Rosli, Carboxymethyl Cellulose (CMC) from oil palm empty fruit bunch (OPEFB) in the new solvent dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride (TBAF),, J. Phys. Conf. Ser. 622 (2015) 21-28.

DOI: 10.1088/1742-6596/622/1/012026

[12] L. Zhang, G. Zhang, J. Lu, and H. Liang, Preparation and Characterization of Carboxymethyl Cellulose/Polyvinyl Alcohol Blend Film as a Potential Coating Material,, Polym. - Plast. Technol. Eng. 52 (2013) 163–167.

DOI: 10.1080/03602559.2012.734361

[13] A.-M. Albu, I. Maior, C. A. Nicolae, and F. L. Bocăneală, NOVEL PVA PROTON CONDUCTING MEMBRANES DOPED WITH POLYANILINE GENERATED BY IN-SITU POLYMERIZATION,, Electrochim. Acta. 211 (2016) 911–917.

DOI: 10.1016/j.electacta.2016.06.098

[14] N. A. H. Rosli, K. S. Loh, W. Y. Wong, T. K. Lee, and A. Ahmad, Hybrid Composite Membrane of Phosphorylated Chitosan/Poly (Vinyl Alcohol)/Silica as a Proton Exchange Membrane,, Membranes (Basel). 11 (2021) 12-19.

DOI: 10.3390/membranes11090675

[15] K. Ullah, M. Sohail, G. Murtaza, and S. A. Khan, Natural and synthetic materials based CMCh/PVA hydrogels for oxaliplatin delivery: Fabrication, characterization, In-Vitro and In-Vivo safety profiling,, Int. J. Biol. Macromol.122 (2019) 538–548.

DOI: 10.1016/j.ijbiomac.2018.10.203

[16] M. A. Saadiah and A. S. Samsudin, Electrical study on Carboxymethyl Cellulose-Polyvinyl alcohol based bio-polymer blend electrolytes,, IOP Conf. Ser. Mater. Sci. Eng. 342 (2018) 23-30.

DOI: 10.1088/1757-899x/342/1/012045

[17] J. Pandey and A. Shukla, Synthesis and characterization of PVDF supported silica immobilized phosphotungstic acid (Si-PWA/PVDF) ion exchange membrane,, Mater. Lett.100 (2013) 292–295.

DOI: 10.1016/j.matlet.2013.03.039

[18] J. Zhang, S. Chen, H. Bai, S. Lu, Y. Xiang, and S. P. Jiang, Effects of phosphotungstic acid on performance of phosphoric acid doped polyethersulfone-polyvinylpyrrolidone membranes for high temperature fuel cells,, Int. J. Hydrogen Energy. 46 (2021) 11104–11114.

DOI: 10.1016/j.ijhydene.2020.07.082

[19] F. Feng, D. H. Coutinho, Z. Yang, J. P. Ferraris, and K. J. Balkus, Synthesis of proton conducting tungstosilicate mesoporous materials (WMM) and organic/WMM composite membranes for high temperature PEM fuel cells,, ACS Natl. Meet. B. Abstr. 228 (2004) 621–622.

DOI: 10.1016/j.micromeso.2005.01.025

[20] G. Xu et al., Stabilizing phosphotungstic acid in Nafion membrane via targeted silica fixation for high-temperature fuel cell application,, Int. J. Hydrogen Energy. 46 (2021) 4301–4308.

DOI: 10.1016/j.ijhydene.2020.10.157

[21] H. Kim et al., Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid,, J. Mater. Sci. 52 (2017) 2400–2412.

DOI: 10.1007/s10853-016-0534-z

[22] A. Priyangga, L. Atmaja, M. Santoso, J. Jaafar, and H. Ilbeygi, Utilization of mesoporous phosphotungstic acid in nanocellulose membranes for direct methanol fuel cells,, RSC Adv. 12 (2022) 14411–14421.

DOI: 10.1039/d2ra01451c

[23] A. Bagus Pambudi, A. Priyangga, D. Hartanto, and L. Atmaja, Fabrication and characterization of modified microcrystalline cellulose membrane as proton exchange membrane for direct methanol fuel cell,, Mater. Today Proc. 46 (2020) 855–1859.

DOI: 10.1016/j.matpr.2021.01.431

[24] J. Pandey, F. Q. Mir, and A. Shukla, Synthesis of silica immobilized phosphotungstic acid (Si-PWA)-poly(vinyl alcohol) (PVA) composite ion-exchange membrane for direct methanol fuel cell,, Int. J. Hydrogen Energy. 39 (2014) 9473–9481.

DOI: 10.1016/j.ijhydene.2014.03.237

[25] M. P. Adinugraha, D. W. Marseno, and Haryadi, Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT),, Carbohydr. Polym. 62 (2005) 164–169.

DOI: 10.1016/j.carbpol.2005.07.019

[26] F. N. Gómez, M. Y. Combariza, and C. Blanco-Tirado, Facile cellulose nanofibrils amidation using a "one-pot" approach,, Cellulose. 24 (2017) 717–730.

DOI: 10.1007/s10570-016-1174-9

[27] M. S. A. Rani, S. Rudhziah, A. Ahmad, and N. S. Mohamed, Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber,, Polymers (Basel). 6 (2014) 2371–2385.

DOI: 10.3390/polym6092371

[28] A. K. Saha and S. D. Ray, Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres,, Brazilian J. Pharm. Sci. 4 (2013) 873–888.

DOI: 10.1590/s1984-82502013000400028

[29] A. B. D. Nandiyanto, R. Oktiani, and R. Ragadhita, How to read and interpret ftir spectroscope of organic material,, Indones. J. Sci. Technol. 4 (2019) 97–118.

DOI: 10.17509/ijost.v4i1.15806

[30] S. Sophonputtanaphoca, P. Chutong, K. Cha-aim, and P. Nooeaid, Potential of Thai rice straw as a raw material for the synthesis of carboxymethyl cellulose,, Int. Food Res. J. 26 (2019) 969–978.

[31] P. A. Putro, N. Yudasari, and A. Maddu, Spectroscopic Study on the Film of Polyvinyl Alcohol and Carboxymethyl Cellulose as Polymer Electrolyte Materials,, J. Phys. Conf. Ser. 1491 (2020) 39-46.

DOI: 10.1088/1742-6596/1491/1/012033

[32] J. Chen, H. Li, C. Fang, Y. Cheng, T. Tan, and H. Han, Synthesis and structure of carboxymethylcellulose with a high degree of substitution derived from waste disposable paper cups,, Carbohydr. Polym. 237 (2020) 19-27.

DOI: 10.1016/j.carbpol.2020.116040

[33] V. Sampatrao, R. Jacky, and K. Krishnat, Journal of Drug Delivery Science and Technology Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel fi lms for extended release of water soluble basic drugs,. 52 (2019) 421–430.

DOI: 10.1016/j.jddst.2019.05.013

[34] M. H. Mohamed, H. Ilbeygi, J. Jaafar, M. Aziz, M. H. D. Othman, and M. A. Rahman, Influence of mesoporous phosphotungstic acid on the physicochemical properties and performance of sulfonated poly ether ether ketone in proton exchange membrane fuel cell,, Int. J. Hydrogen Energy. 47 (2022) 10736–10746.

DOI: 10.1016/j.ijhydene.2022.01.084

[35] W. Xu et al., New proton exchange membranes based on poly (vinyl alcohol) for DMFCs,, Solid State Ionics. 171 (2004)121–127.

DOI: 10.1016/j.ssi.2004.04.009

[36] S. Mohanapriya and V. Raj, Cesium-substituted mesoporous phosphotungstic acid embedded chitosan hybrid polymer membrane for direct methanol fuel cells,, Ionics (Kiel). 24 (2018) 2729–2743.

DOI: 10.1007/s11581-017-2406-1

[37] S. Neelakandan, P. Kanagaraj, A. Nagendran, D. Rana, T. Matsuura, and A. Muthumeenal, Enhancing proton conduction of sulfonated poly (phenylene ether ether sulfone) membrane by charged surface modifying macromolecules for H2/O2 fuel cells,, Renew. Energy. 78 (2015) 306–313.

DOI: 10.1016/j.renene.2015.01.001

[38] H. Liu et al., Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications,, Carbohydr. Polym. 136 (2016) 1379–1385.

[39] F. Altaf et al., Novel N-p-carboxy benzyl chitosan/poly (vinyl alcohol/functionalized zeolite mixed matrix membranes for DMFC applications,, Carbohydr. Polym. 237(2020) 116111.

DOI: 10.1016/j.carbpol.2020.116111

[40] Y. Ou et al., Chitosan-based composite membranes containing chitosan-coated carbon nanotubes for polymer electrolyte membranes,, Polym. Adv. Technol. 29 (2018) 612–622.

DOI: 10.1002/pat.4171

[41] J. Xu, H. Ni, S. Wang, Z. Wang, and H. Zhang, Direct polymerization of a novel sulfonated poly(arylene ether ketone sulfone)/sulfonated poly(vinylalcohol) crosslinked membrane for direct methanol fuel cell applications,, J. Memb. Sci. 492 (2015) 505–517.

DOI: 10.1016/j.memsci.2015.06.031

[42] A. Selim, G. P. Szijjártó, L. Románszki, and A. Tompos, Development of WO3–Nafion Based Membranes for Enabling Higher Water Retention at Low Humidity and Enhancing PEMFC Performance at Intermediate Temperature Operation,, Polymers (Basel).14 (2022) 2492.

DOI: 10.3390/polym14122492

[43] A. Priyangga, Z. Mumtazah, H. Junoh, J. Jaafar, and L. Atmaja, Morphology and Topography Studies of Composite Membranes Developed from Chitosan / Phthaloyl Chitosan Consisting Multi-Walled Carbon Nanotube / Montmorillonite as Filler Graphical abstract Keywords,. 7 (2021) 295–304.

DOI: 10.1063/1.5141679

[44] T. Yang et al., A graphene oxide polymer brush based cross-linked nanocomposite proton exchange membrane for direct methanol fuel cells,, RSC Adv. 8 (2018) 15740–15753.

DOI: 10.1039/c8ra01731j

[45] A. Uma Devi, K. Divya, D. Rana, M. Sri Abirami Saraswathi, and A. Nagendran, Highly selective and methanol resistant polypyrrole laminated SPVdF-co-HFP/PWA proton exchange membranes for DMFC applications,, Mater. Chem. Phys. 212 (2018) 533–542.

DOI: 10.1016/j.matchemphys.2018.03.086

[46] K. A. Sidharthan and S. Joseph, Preparation and characterization of polyvinyl alcohol based nanocomposite membrane for direct methanol fuel cell,, AIP Conf. Proc. 2162 (2019) 34-59.

DOI: 10.1063/1.5130353

Top Articles
Latest Posts
Article information

Author: Fredrick Kertzmann

Last Updated: 02/12/2023

Views: 5596

Rating: 4.6 / 5 (46 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Fredrick Kertzmann

Birthday: 2000-04-29

Address: Apt. 203 613 Huels Gateway, Ralphtown, LA 40204

Phone: +2135150832870

Job: Regional Design Producer

Hobby: Nordic skating, Lacemaking, Mountain biking, Rowing, Gardening, Water sports, role-playing games

Introduction: My name is Fredrick Kertzmann, I am a gleaming, encouraging, inexpensive, thankful, tender, quaint, precious person who loves writing and wants to share my knowledge and understanding with you.